PENDAHULUAN
Indonesia merupakan negara agraris yang menitik-beratkan pembangunannya pada sektor pertanian. Namun, berdasarkan data dari Biro Pusat Statistik (BPS) hingga kini kebutuhan beras masih lebih tinggi daripada produksi nasional sehingga saat ini Indonesia masih perlu mengimpor beras, bahkan pernah mencapai volume 5,8 juta ton. Kondisi ini menyebabkan Indonesia pernah menjadi negara agraris pengimpor beras terbesar di dunia.
Volume impor produk-produk pertanian lainnya juga mengalami peningkatan. Impor jagung misalnya dari 298.236 ton (1998), 591.056 ton (20% dari kebutuhan, 1999) menjadi 1.199.322 ton (60% dari kebutuhan, 2000). Impor gandum sebesar 3,58 juta ton, kedelai sebesar 1,27 juta ton, gula pasir sebesar 1,7 juta ton. Data BPS juga menunjukkan bahwa pada tahun 2001 Indonesia mengimpor 0,8 juta ton kacang tanah, 0,3 juta ton kacang hijau, bahkan 0,9 juta ton gaplek.
Ada banyak faktor yang menyebabkan penurunan produktivitas pertanian di Indonesia. Berdasarkan kajian yang dilakukan oleh Bappenas (2002) salah satu penyebabnya adalah berkurangnya luas lahan pertanian di Indonesia. Penyebab lain menurut Adi (2003) adalah menurunnya kualitas lahan pertanian di Indonesia akibat erosi, residu bahan kimia seperti herbisida dan pestisida, dan pencemaran logam berat. Serangan hama dan penyakit yang masih sulit dikendalikan, seperti busuk pangkal batang sawit ( Gonoderma sp) dan Penggerek Buah Kakao (PBK), juga merupakan salah satu kendala yang mengancam dunia agribisnis di Indonesia.
Kondisi ini bertolak belakang dengan negara-negara industri maju yang bukan negara agraris. Sebagai contoh, Amerika memproduksi sekitar 42,8 % dari total produksi kedelai dunia pada tahun 2001/2002 dengan volume 78,67 juta ton. Indonesia pada tahun 2001 hanya menghasilkan 0,82 juta ton kedelai. Produktivitas kedelai Indonesia juga jauh lebih rendah daripada produktivitas kedelai di negara industri. Produkvititas kedelai di AS adalah 2,66 ton/ha, sedangkan di Indonesai 1,2 ton/ha atau hanya 45%-nya (Pakpahan, 2004). Itu semua dapat terjadi karena negara industri maju menerapkan pertanian berbasis bioteknologi ( Biotechnological Agriculture ).
Perkembangan pertanian berbasis bioteknologi bukan pada komoditasnya, misalnya kelapa sawit, melainkan teknologi yang dapat menciptakan sifat-sifat kelapa sawit yang unggul seperti yang diinginkan oleh komsumen. Pertanian berbasis bioteknologi ini sebagian besar merupakan output dari perusahaan-perusahaan besar. Data dari USDA menyebutkan bahwa sejak 1976 – 2000 jumlah paten produk bioteknologi telah mencapai 11.073 buah. Sepuluh perusahaan besar yang menerima paten terbanyak dalam bidang bioteknologi di AS adalah Monsanto Co., Inc (674 paten), Du Pont, E.I. De Nemours and Co. (565 paten), Pioner Hi-Bred International, Inc. (449 paten), USDA (315 paten), Sygenta (284 paten), Novartis AG (230 paten), University of California (221 paten), BASF AG (217 paten), Dow Chemical Co. (214 paten), dan Hoechast Japan Ltd. (207 paten. Sebagian dari produk-produk bioteknologi tersebut juga sudah beredar di Indonesia.
Bioteknologi menawarkan suatu solusi untuk mengembangkan pertanian di Indonesia. Banyak penelitian-penelitian bioteknologi yang telah dilakukan. Namun, sangat jarang yang berhasil menjadi sebuah produk yang siap dikomersialkan dan dipergunakan oleh petani. Banyak penelitian-penelitian bioteknologi yang hanya menjadi makalah dalam seminar atau artikel di dalam jurnal-jurnal ilmiah. Sebagian menjadi produk yang setengah jadi atau belum siap dikomersialkan dan sebagian lagi gagal dalam komersialisasi. Sosialisasi produk bioteknologi juga telah banyak dilakukan. Namun, dari sosialisasi itu produk bioteknologi hanya sampai pada petani, tetapi tidak sampai di lahan petani. Makalah ini menyajikan secara ringkas komersialisasi produk bioteknologi yang didasarkan pada pengalaman penulis senior.
BIOTEKNOLOGI
Bioteknologi berasal dari dua kata, yaitu 'bio' yang berarti makhuk hidup dan 'teknologi' yang berarti cara untuk memproduksi barang atau jasa. Dari paduan dua kata tersebut European Federation of Biotechnology (1989) mendefinisikan bioteknologi sebagai perpaduan dari ilmu pengetahuan alam dan ilmu rekayasa yang bertujuan meningkatkan aplikasi organisme hidup, sel, bagian dari organisme hidup, dan/atau analog molekuler untuk menghasilkan produk dan jasa (Goenadi & Isroi, 2003).
Dengan definisi tersebut bioteknologi bukan merupakan sesuatu yang baru. Dimulai dari nenek moyang kita, pemanfaatkan mikroba telah dilakukan untuk membuat produk-produk berguna seperti tempe, oncom, tape, arak, terasi, kecap, yogurt, dan nata de coco . Hampir semua antibiotik berasal dari mikroba, demikian pula enzim-enzim yang dipakai untuk membuat sirop fruktosa hingga pencuci pakaian. Dalam bidang pertanian, mikroba penambat nitrogen telah dimanfaatkan sejak abad ke 19. Mikroba pelarut fosfat telah dimanfaatkan untuk pertanian di negara-negara Eropa Timur sejak tahun 1950-an. Mikroba juga telah dimanfaatkan secara intensif untuk mendekomposisi limbah dan kotoran. Bioteknologi memiliki gradien perkembangan teknologi, yang dimulai dari penerapan bioteknologi tradisional yang telah lama dan secara luas dimanfaatkan, hingga teknik-teknik bioteknologi baru dan secara terus menerus berevolusi (Gambar 1).
Gambar 1. Gradien Bioteknologi (dimodifikasi dari Doyle & Presley, 1996).
Perkembangan bioteknologi secara drastis terjadi sejak ditemukannya struktur helik ganda DNA dan teknologi DNA rekombinan di awal tahun 1950-an. Ilmu pengetahuan telah sampai pada suatu titik yang memungkinkan orang untuk memanipulasi suatu organisme di taraf seluler dan molekuler. Bioteknologi mampu melakukan perbaikan galur dengan cepat dan dapat diprediksi, juga dapat merancang galur dengan bahan genetika tambahan yang tidak pernah ada pada galur asalnya. Memanipulasi organisme hidup untuk kepentingan manusia bukan merupakan hal yang baru. Bioteknologi molekuler menawarkan cara baru untuk memanipulasi organisme hidup.
Seperti halnya teknologi-teknologi yang lain, aplikasi bioteknologi untuk pertanian selain menawarkan berbagai keuntungan juga memiliki potensi risiko kerugian. Keuntungan potensial bioteknologi pertanian antara lain: potensi hasil panen yang lebih tinggi, mengurangi penggunaan pupuk dan pestisida, toleran terhadap cekaman lingkungan, pemanfaatan lahan marjinal, identifikasi dan eliminasi penyakit di dalam makanan ternak, kualitas makanan dan gizi yang lebih baik, dan perbaikan defisiensi mikronutrien (Jones, 2003). Satu pendekatan baru yang sedang mendapatkan banyak perhatian adalah Bio-farming , seperti antibiotika dalam buah pisang.
Potensi risiko bioteknologi terhadap pertanian dan lingkungan – walaupun masih dalam perdebatan - antara lain efek balik terhadap organisme non-target, pembentukan hama resisten, dan transfer gen yang tidak diinginkan yang meliputi transfer gen ke tanaman liar sejenis, transfer gen penyandi untuk produksi gen toksik, dan transfer gen resisten antibiotik melalui gen penanda ( marker ) antibiotik. Beberapa kritikan menyebutkan bahwa modifikasi DNA rekombinan menyebabkan pangan tidak aman untuk dimakan. Kelompok pecinta lingkungan mengkritik bahwa organisme trasgenik menyebabkan kerusakan keragaman hayati, karena membunuh organisme liar yang berguna, atau membuat organisme invasif yang dapat merusak lingkungan (Conko, 2003).
Terlepas dari perdebatan keuntungan dan kerugian di atas, prinsip ”kehati-hatian” harus dikedepankan dalam aplikasi bioteknologi untuk agribisnis, khususnya rekayasa genetika. Pelajaran yang baik dapat kita peroleh dari pengalaman Revolusi Hijau yang semula dianggap aman, namun intensifikasi penggunaan pupuk dan pestisida terbukti berakibat buruk terhadap lingkungan dan baru diketahui setelah beberapa puluh tahun kemudian.
PRODUK BIOTEKNOLOGI PERTANIAN
Produk-produk bioteknologi pertanian di Indonesia berdasarkan gradien bioteknologi antara lain : (1) bahan tanam unggul, (2) biofertilizer, (3) biodecomposer, dan (4) biocontrol.
Bahan tanam dapat ditingkatkan kualitasnya melalui pendekatan bioteknologi. Peningkatan kualitas bahan tanam berdasarkan pada empat kategori peningkatan, yaitu peningkatan kualitas pangan, resistensi terhadap hama atau penyakit, toleransi terhadap cekaman lingkungan, dan manajemen budidaya (Huttner, 2003). Produk bahan tanam unggul yang saat ini telah berhasil dipasarkan antara lain adalah bibit kultur jaringan, misalnya: bibit jati dan bibit tanaman hortikultura. Namun, bahan tanam unggul yang dihasilkan dari rekayasa genetika yang dilakukan oleh peneliti di Indonesia sampai saat ini belum ada yang dikomersialkan. Produk-produk bahan tanam rekayasa genetika yang ada di pasaran Indonesia umumnya merupakan produk dari negera lain, sebagai contoh : Jagung Bt dan Kapas Bt yang dipasarkan oleh Monsanto. Kultur jaringan merupakan tingkatan umum penguasaan bioteknologi di Indonesia. Bagaimanapun juga, produksi bibit kelapa kopyor telah berhasil di komersialkan melalui teknik transfer embrio (Paten ID 0 001 957).
Produk biofertilizer merupakan salah satu produk bioteknologi yang banyak beredar di pasaran Indonesia. Produk-produk tersebut sebagian dikembangkan oleh peneliti di Indonesia maupun di impor dari negara lain. Salah satu produk biofertilizer bernama Emas ( Enhancing Microbial Activity in the Soils ) telah dirakit oleh BPBPI (Paten ID 0 000 206 S), dilisensi oleh PT Bio Industri Nusantara dan digunakan di berbagai perusahaan perkebunan (BUMN dan BUMS) (Goenadi, 1998). Produk biofertilizer lain yang dikembangkan oleh peneliti di Indonesia antara lain: Rhizoplus , Rhiphosant , Bio P Z 2000, dan lain-lain. Produk sejenis biofertilizer/ bioconditioner dari luar negeri misalnya: Organic Soil Treatment (OST).
Produk-produk biodecomposer juga banyak beredar di pasaran Indonesia. Biodecomposer dipergunakan untuk mempercepat proses penguraian limbah-limbah organik segar pertanian menjadi kompos yang siap diaplikasikan ke dalam tanah. Contoh produk-produk biodecomposer antara lain: Orgadec (BPBPI), SuperDec (BPBPI), Degra Simba (ITB), Starbio , EM4 , dan lain sebagainya. Produk-produk baru terus bermunculan sejalan dengan kebutuhan untuk mengatasi masalah limbah padat organik.
Mikroba juga telah dimanfaatkan untuk mengendalikan hama dan penyakit tanaman. Aplikasi mikroba untuk biokontrol hama dan penyakit tanaman meliputi mikroba liar yang telah diseleksi maupun mikroba yang telah mengalami rekayasa genetika. Contoh mikroba yang telah banyak dimanfaatkan untuk biokontrol adalah Beauveria bassiana untuk mengendalikan serangga, Metarhizium anisopliae untuk mengendalikan hama boktor tebu ( Dorysthenes sp) dan boktor sengon ( Xyxtrocera festiva ), dan Trichoderma harzianum untuk mengendalikan penyakit tular tanah ( Gonoderma sp, Jamur Akar Putih, dan Phytopthora sp). Produk-produk biokontrol yang telah dikomersialisasikan oleh unit kerja lingkup Lembaga Riset Perkebunan Indonesia (LRPI) antara lain : Meteor, Greemi-G, Triko SP, NirAma , dan Marfu . Keuntungan pemanfaatan biokontrol untuk pertanian antara lain adalah ramah lingkungan, dan mengurangi konsumsi pestisida yang tidak ramah lingkungan.
Mikroba juga dimanfaatkan dalam proses pembuatan pupuk anorganik. Peneliti di Balai Penelitian Bioteknologi Perkebunan Indonesia (BPBPI) mengembangkan teknologi pembuatan pupuk superfosfat yang disebut dengan Bio-SP dengan menggunakan bantuan mikroba pelarut fosfat. Kualitas dari Bio-SP menyamai kualitas pupuk superfosfat konvensional (SP 36). Keunggulan dari teknologi ini adalah penggunaan agensia hayati untuk mengurangi konsumsi asam anorganik dan lebih aman lingkungan serta mampu mengurangi biaya produksi.
KOMERSIALISASI PRODUK BIOTEKNOLOGI
Komersialisasi merupakan serangkaian upaya dari pengembangan dan pemasaran sebuah produk atau pengembangan sebuah proses dan penerapan proses ini dalam kegiatan produksi. Kegiatan ini merupakan rangkaian yang cukup kompleks dengan melibatkan berbagai aspek yang mencakup kebijakan ekonomi, sumberdaya manusia, investasi, waktu, lingkungan pasar, dan sebagainya. Tahapan-tahapan komersialisasi sebuah produk bioteknologi umumnya seperti yang terlihat pada Gambar 2.
Sebuah invensi bioteknologi pada dasarnya merupakan ide atau solusi bagi sebuah masalah teknis. Oleh karena itu adalah sangat penting untuk memperoleh perlindungan hukum sebelum mengkomersialkannya. Dalam beberapa kasus, penelitian lebih lanjut masih dibutuhkan sebelum sebuah invensi dapat diwujudkan dalam bentuk produk yang dapat dipasarkan atau proses yang dapat diterapkan dalam produksi komersial. Bahkan setelah produksi dari invensi baru dilaksanakan, upaya lebih lanjut masih dibutuhkan untuk memasarkannya, yang juga memerlukan dukungan sumberdaya manusia, investasi, waktu, dan kerja kreatif.
Gambar 2. Tahapan umum komersialisasi produk bioteknologi (Goenadi, 2004)
Banyak penelitian-penelitian bioteknologi pertanian yang sejak awal memiliki defisiensi, misalnya penelitian yang sudah ada sebelumnya untuk menangani masalah yang sama dan penelitian baru ini tidak memiliki keunggulan ekonomis dan teknis dibandingkan yang telah ada di pasar, atau ada produk baru yang lebih baik muncul setelah invensi bioteknologi sebelumnya dan invensi sebelumnya akan menjadi tidak berharga sebelum sempat dikomersialisasikan.
Riset pengembangan merupakan tahapan yang sangat penting sebelum sebuah hasil penelitian bioteknologi dapat menjadi sebuah produk atau proses. Walaupun banyak tahapan yang dapat ditempuh, pengalaman penulis menunjukkan bahwa riset pengembangan menentukan keyakinan pihak investor dalam mengkomersialisasikan teknologi yang dihasilkan. Tahapan umumnya adalah seperti yang digambarkan pada Gambar 3. Produk-produk rekayasa genetika memerlukan serangkain tahapan pengujian yang lebih rumit lagi sebelum dapat dikomersialkan secara luas (Carpenter & Gianessi. 2001).
Faktor lain yang penting adalah menyangkut kebijakan keuangan, pajak, dan yang terkait lainnya. Manfaat yang besar dapat diperoleh dari penerapan produk bioteknologi baru, namun komersialisasi invensi bioteknolgi itu sendiri mengandung risiko yang tinggi. Sangat sering sebuah produk baru atau proses digantikan oleh yang lebih baru dan lebih efisien dalam tempo yang singkat sebelum investornya mampu memperoleh kembali investasinya. Tanpa adanya preferensi kebijakan keuangan, pajak, dan yang terkait lainnya, investor akan enggan untuk menanamkan modalnya pada komersialisasi invensi yang berisiko.
Gambar 3. Tahapan riset pengembangan produk bioteknologi hingga komersialisasi (Goenadi, 2004)
PENGALAMAN PEMASARAN INVENSI PRODUK BIOTEKNOLOGI
Salah satu kunci keberhasilan komersialisasi produk bioteknologi adalah adanya kebutuhan pasar dan mutu produk yang dihasilkan cukup memadai. Produk-produk berbasis bioteknologi memperoleh apresiasi pasar karena masyarakat lebih sadar terhadap pentingnya produk hayati. Oleh karena itu, produk-produk pupuk hayati, pelapuk hayati, dan tanaman hasil kultur jaringan relatif mudah memperoleh tanggapan positif dari pasar.
Faktor kunci lainnya adalah jenis produk yang dihasilkan harus mampu menawarkan peningkatan efisiensi pada tingkat harga yang layak. Memasarkan produk pupuk hayati, yang mampu menghemat penggunaan pupuk kimia pada saat harga pupuk terus meningkat dan subsidi oleh pemerintah dihapus akan sangat efektif. Diperolehnya invensi terobosan dalam menghasilkan tanaman kelapa kopyor yang buahnya dalam satu pohon seluruhnya kopyor merupakan nilai jual yang sangat unik dan strategis.
Di samping aspek produk tersebut di atas, pengenalan terhadap segmen pasar adalah sangat penting artinya agar invensi yang diciptakan mampu secara potensial memiliki pasar utama ( captive market ). Untuk itu diperlukan strategi mengamankan pasar produk melalui keterkaitan yang erat antara produsen dan konsumen. Salah satunya adalah bahwa produsen adalah sekaligus bertindak sebagai konsumen utama.
PENUTUP
Produk-produk bioteknologi di satu sisi menawarkan keuntungan bagi pengguna, tetapi di sisi lain masih diragukan efektivitasnya dibandingkan dengan hasil-hasil teknologi konvensional. Oleh karena itu, program sosialisasi produk dalam rangka komersialisasi perlu direncanakan secara seksama dan dilaksanakan secara terus-menerus. Kejelian mengantisipasi permintaan pasar merupakan kunci keberhasilan pemasaran produk-produk bioteknologi pertanian.
DAFTAR PUSTAKA
Adi, A. 2003. Degradasi Tanah Pertanian Indonesia Tanggung Jawab Siapa? Tabloid Sinar Tani, 11 Juni 2003.
Bappenas. 2002. Indonesia Food Policy Program: Does Indonesia Face a Food Security Time Bomb? Working Paper No. 11. Bappenas/Departemen Pertanian/USAID/DAI FOOD POLICY ADVISORY TEAM.
BPS. 1994. Statistik Indonesia. Biro Pusat Statistik, Jakarta
BPS. 2002. Statistik Indonesia. Biro Pusat Statistik, Jakarta
BPS. 2003. Statistik Indonesia. Biro Pusat Statistik, Jakarta
Carpenter, J. E. & L.P. Gianessi. 2001. Agricultural Biotechnology: Update Benefit Estimates. National Center for Food and Agricultural Policy. www.ncfap.org
Conko, G. 2003. The Benefits of Biotech. Regulation Spring, p. 20-25.
Doyle, J.J. & Persley, G.J. 1996. Enabling the Safe Use of Biotechnology: Principles and Practice. Enviromentally Sustainable and Natural Studies and Monographs Series No. 10. World Bank. Washinton, DC.
Goenadi, D.H. 2004. Kiat Menjadi Inventor (Penemu) Sukses. UI Press, Jakarta
Goenadi, D.H. & Isroi. 2003. Aplikasi Bioteknologi dalam Upaya Peningkatan Efisiensi Agribisnis yang Berkelanjutan. Makalah Lokakarya Nasional Pendekataan Kehidupan Pedesaan dan Perkotaan dalam Upaya Membangkitkan Pertanian Progresif, UPN “Veteran” Yogyakarta, 8-9 Desember 2003.
Goenadi, D. H. 2000. Pengalaman pemasaran teknologi pertanian bernilai komersial. Lokakarya Komersialisasi dan Alih Teknologi Hasil Penelitian Pertanian., Bogor, Januari 2000. 14 hal.
Goenadi, D.H., A. Ananta, Gunawan, R. Ishak, M.D. Karim, Y. Sukin, & B. Hartadi. 1998. Biofertilizer Emas untuk Efisiensi Pemupukan. Kumpulan Makalah Pertemuan Teknis Biotek. Perkebunan untuk Praktek. Bogor 6 – 7 Mei 1998, hal. 61-65.
Huttner, S.L. 2003. Biotechnology and Food. University of California Systemwide Biotechnology Research and Education Program. www.acsh.org/publications
Jones, D.D. 2003. Food and Agricultural Biotechnology for the 21 st Century. www.apctt.org/publication
Pakpahan, A. 2004. Ekonomi-Politik Pertanian Bioteknologi. Warta Ekonomi, 10 Maret 2005
Persley, G. J. 2002. Agricultural Biotechnology: Global Challenges and Emerging Science, In: Persley, G.J. and L.R. MacIntyre (ed). 2002. Agricultural Biotechnology: Country Case Studies. CAB International. p. 3-37.
Sillia, S.B. 2003. Enviromental Application of Biotechnology. Foundation for Biotechnology Awareness and Education (FBAE). www.fbae.org .
dari: ipard.com